Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A statistical model for testing the pleiotropic control of phenotypic plasticity for a count trait.

Identifieur interne : 003A03 ( Main/Exploration ); précédent : 003A02; suivant : 003A04

A statistical model for testing the pleiotropic control of phenotypic plasticity for a count trait.

Auteurs : Chang-Xing Ma [États-Unis] ; Qibin Yu ; Arthur Berg ; Derek Drost ; Evandro Novaes ; Guifang Fu ; John Stephen Yap ; Aixin Tan ; Matias Kirst ; Yuehua Cui ; Rongling Wu

Source :

RBID : pubmed:18493077

Descripteurs français

English descriptors

Abstract

The differences of a phenotypic trait produced by a genotype in response to changes in the environment are referred to as phenotypic plasticity. Despite its importance in the maintenance of genetic diversity via genotype-by-environment interactions, little is known about the detailed genetic architecture of this phenomenon, thus limiting our ability to predict the pattern and process of microevolutionary responses to changing environments. In this article, we develop a statistical model for mapping quantitative trait loci (QTL) that control the phenotypic plasticity of a complex trait through differentiated expressions of pleiotropic QTL in different environments. In particular, our model focuses on count traits that represent an important aspect of biological systems, controlled by a network of multiple genes and environmental factors. The model was derived within a multivariate mixture model framework in which QTL genotype-specific mixture components are modeled by a multivariate Poisson distribution for a count trait expressed in multiple clonal replicates. A two-stage hierarchic EM algorithm is implemented to obtain the maximum-likelihood estimates of the Poisson parameters that specify environment-specific genetic effects of a QTL and residual errors. By approximating the number of sylleptic branches on the main stems of poplar hybrids by a Poisson distribution, the new model was applied to map QTL that contribute to the phenotypic plasticity of a count trait. The statistical behavior of the model and its utilization were investigated through simulation studies that mimic the poplar example used. This model will provide insights into how genomes and environments interact to determine the phenotypes of complex count traits.

DOI: 10.1534/genetics.107.081794
PubMed: 18493077
PubMed Central: PMC2390639


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A statistical model for testing the pleiotropic control of phenotypic plasticity for a count trait.</title>
<author>
<name sortKey="Ma, Chang Xing" sort="Ma, Chang Xing" uniqKey="Ma C" first="Chang-Xing" last="Ma">Chang-Xing Ma</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biostatistics, University at Buffalo, SUNY, Buffalo, NY 14214, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biostatistics, University at Buffalo, SUNY, Buffalo, NY 14214</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
<settlement type="city">Buffalo (New York)</settlement>
</placeName>
<orgName type="university">Université d'État de New York à Buffalo</orgName>
</affiliation>
</author>
<author>
<name sortKey="Yu, Qibin" sort="Yu, Qibin" uniqKey="Yu Q" first="Qibin" last="Yu">Qibin Yu</name>
</author>
<author>
<name sortKey="Berg, Arthur" sort="Berg, Arthur" uniqKey="Berg A" first="Arthur" last="Berg">Arthur Berg</name>
</author>
<author>
<name sortKey="Drost, Derek" sort="Drost, Derek" uniqKey="Drost D" first="Derek" last="Drost">Derek Drost</name>
</author>
<author>
<name sortKey="Novaes, Evandro" sort="Novaes, Evandro" uniqKey="Novaes E" first="Evandro" last="Novaes">Evandro Novaes</name>
</author>
<author>
<name sortKey="Fu, Guifang" sort="Fu, Guifang" uniqKey="Fu G" first="Guifang" last="Fu">Guifang Fu</name>
</author>
<author>
<name sortKey="Yap, John Stephen" sort="Yap, John Stephen" uniqKey="Yap J" first="John Stephen" last="Yap">John Stephen Yap</name>
</author>
<author>
<name sortKey="Tan, Aixin" sort="Tan, Aixin" uniqKey="Tan A" first="Aixin" last="Tan">Aixin Tan</name>
</author>
<author>
<name sortKey="Kirst, Matias" sort="Kirst, Matias" uniqKey="Kirst M" first="Matias" last="Kirst">Matias Kirst</name>
</author>
<author>
<name sortKey="Cui, Yuehua" sort="Cui, Yuehua" uniqKey="Cui Y" first="Yuehua" last="Cui">Yuehua Cui</name>
</author>
<author>
<name sortKey="Wu, Rongling" sort="Wu, Rongling" uniqKey="Wu R" first="Rongling" last="Wu">Rongling Wu</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2008">2008</date>
<idno type="RBID">pubmed:18493077</idno>
<idno type="pmid">18493077</idno>
<idno type="doi">10.1534/genetics.107.081794</idno>
<idno type="pmc">PMC2390639</idno>
<idno type="wicri:Area/Main/Corpus">003886</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003886</idno>
<idno type="wicri:Area/Main/Curation">003886</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003886</idno>
<idno type="wicri:Area/Main/Exploration">003886</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A statistical model for testing the pleiotropic control of phenotypic plasticity for a count trait.</title>
<author>
<name sortKey="Ma, Chang Xing" sort="Ma, Chang Xing" uniqKey="Ma C" first="Chang-Xing" last="Ma">Chang-Xing Ma</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biostatistics, University at Buffalo, SUNY, Buffalo, NY 14214, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biostatistics, University at Buffalo, SUNY, Buffalo, NY 14214</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
<settlement type="city">Buffalo (New York)</settlement>
</placeName>
<orgName type="university">Université d'État de New York à Buffalo</orgName>
</affiliation>
</author>
<author>
<name sortKey="Yu, Qibin" sort="Yu, Qibin" uniqKey="Yu Q" first="Qibin" last="Yu">Qibin Yu</name>
</author>
<author>
<name sortKey="Berg, Arthur" sort="Berg, Arthur" uniqKey="Berg A" first="Arthur" last="Berg">Arthur Berg</name>
</author>
<author>
<name sortKey="Drost, Derek" sort="Drost, Derek" uniqKey="Drost D" first="Derek" last="Drost">Derek Drost</name>
</author>
<author>
<name sortKey="Novaes, Evandro" sort="Novaes, Evandro" uniqKey="Novaes E" first="Evandro" last="Novaes">Evandro Novaes</name>
</author>
<author>
<name sortKey="Fu, Guifang" sort="Fu, Guifang" uniqKey="Fu G" first="Guifang" last="Fu">Guifang Fu</name>
</author>
<author>
<name sortKey="Yap, John Stephen" sort="Yap, John Stephen" uniqKey="Yap J" first="John Stephen" last="Yap">John Stephen Yap</name>
</author>
<author>
<name sortKey="Tan, Aixin" sort="Tan, Aixin" uniqKey="Tan A" first="Aixin" last="Tan">Aixin Tan</name>
</author>
<author>
<name sortKey="Kirst, Matias" sort="Kirst, Matias" uniqKey="Kirst M" first="Matias" last="Kirst">Matias Kirst</name>
</author>
<author>
<name sortKey="Cui, Yuehua" sort="Cui, Yuehua" uniqKey="Cui Y" first="Yuehua" last="Cui">Yuehua Cui</name>
</author>
<author>
<name sortKey="Wu, Rongling" sort="Wu, Rongling" uniqKey="Wu R" first="Rongling" last="Wu">Rongling Wu</name>
</author>
</analytic>
<series>
<title level="j">Genetics</title>
<idno type="ISSN">0016-6731</idno>
<imprint>
<date when="2008" type="published">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Algorithms (MeSH)</term>
<term>Computer Simulation (MeSH)</term>
<term>Environment (MeSH)</term>
<term>Genotype (MeSH)</term>
<term>Likelihood Functions (MeSH)</term>
<term>Models, Genetic (MeSH)</term>
<term>Monte Carlo Method (MeSH)</term>
<term>Phenotype (MeSH)</term>
<term>Quantitative Trait Loci (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Algorithmes (MeSH)</term>
<term>Environnement (MeSH)</term>
<term>Fonctions de vraisemblance (MeSH)</term>
<term>Génotype (MeSH)</term>
<term>Locus de caractère quantitatif (MeSH)</term>
<term>Modèles génétiques (MeSH)</term>
<term>Méthode de Monte Carlo (MeSH)</term>
<term>Phénotype (MeSH)</term>
<term>Simulation numérique (MeSH)</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Algorithms</term>
<term>Computer Simulation</term>
<term>Environment</term>
<term>Genotype</term>
<term>Likelihood Functions</term>
<term>Models, Genetic</term>
<term>Monte Carlo Method</term>
<term>Phenotype</term>
<term>Quantitative Trait Loci</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Algorithmes</term>
<term>Environnement</term>
<term>Fonctions de vraisemblance</term>
<term>Génotype</term>
<term>Locus de caractère quantitatif</term>
<term>Modèles génétiques</term>
<term>Méthode de Monte Carlo</term>
<term>Phénotype</term>
<term>Simulation numérique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The differences of a phenotypic trait produced by a genotype in response to changes in the environment are referred to as phenotypic plasticity. Despite its importance in the maintenance of genetic diversity via genotype-by-environment interactions, little is known about the detailed genetic architecture of this phenomenon, thus limiting our ability to predict the pattern and process of microevolutionary responses to changing environments. In this article, we develop a statistical model for mapping quantitative trait loci (QTL) that control the phenotypic plasticity of a complex trait through differentiated expressions of pleiotropic QTL in different environments. In particular, our model focuses on count traits that represent an important aspect of biological systems, controlled by a network of multiple genes and environmental factors. The model was derived within a multivariate mixture model framework in which QTL genotype-specific mixture components are modeled by a multivariate Poisson distribution for a count trait expressed in multiple clonal replicates. A two-stage hierarchic EM algorithm is implemented to obtain the maximum-likelihood estimates of the Poisson parameters that specify environment-specific genetic effects of a QTL and residual errors. By approximating the number of sylleptic branches on the main stems of poplar hybrids by a Poisson distribution, the new model was applied to map QTL that contribute to the phenotypic plasticity of a count trait. The statistical behavior of the model and its utilization were investigated through simulation studies that mimic the poplar example used. This model will provide insights into how genomes and environments interact to determine the phenotypes of complex count traits.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">18493077</PMID>
<DateCompleted>
<Year>2008</Year>
<Month>09</Month>
<Day>22</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>27</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0016-6731</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>179</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2008</Year>
<Month>May</Month>
</PubDate>
</JournalIssue>
<Title>Genetics</Title>
<ISOAbbreviation>Genetics</ISOAbbreviation>
</Journal>
<ArticleTitle>A statistical model for testing the pleiotropic control of phenotypic plasticity for a count trait.</ArticleTitle>
<Pagination>
<MedlinePgn>627-36</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1534/genetics.107.081794</ELocationID>
<Abstract>
<AbstractText>The differences of a phenotypic trait produced by a genotype in response to changes in the environment are referred to as phenotypic plasticity. Despite its importance in the maintenance of genetic diversity via genotype-by-environment interactions, little is known about the detailed genetic architecture of this phenomenon, thus limiting our ability to predict the pattern and process of microevolutionary responses to changing environments. In this article, we develop a statistical model for mapping quantitative trait loci (QTL) that control the phenotypic plasticity of a complex trait through differentiated expressions of pleiotropic QTL in different environments. In particular, our model focuses on count traits that represent an important aspect of biological systems, controlled by a network of multiple genes and environmental factors. The model was derived within a multivariate mixture model framework in which QTL genotype-specific mixture components are modeled by a multivariate Poisson distribution for a count trait expressed in multiple clonal replicates. A two-stage hierarchic EM algorithm is implemented to obtain the maximum-likelihood estimates of the Poisson parameters that specify environment-specific genetic effects of a QTL and residual errors. By approximating the number of sylleptic branches on the main stems of poplar hybrids by a Poisson distribution, the new model was applied to map QTL that contribute to the phenotypic plasticity of a count trait. The statistical behavior of the model and its utilization were investigated through simulation studies that mimic the poplar example used. This model will provide insights into how genomes and environments interact to determine the phenotypes of complex count traits.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ma</LastName>
<ForeName>Chang-Xing</ForeName>
<Initials>CX</Initials>
<AffiliationInfo>
<Affiliation>Department of Biostatistics, University at Buffalo, SUNY, Buffalo, NY 14214, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yu</LastName>
<ForeName>Qibin</ForeName>
<Initials>Q</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Berg</LastName>
<ForeName>Arthur</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Drost</LastName>
<ForeName>Derek</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Novaes</LastName>
<ForeName>Evandro</ForeName>
<Initials>E</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Fu</LastName>
<ForeName>Guifang</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yap</LastName>
<ForeName>John Stephen</ForeName>
<Initials>JS</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tan</LastName>
<ForeName>Aixin</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kirst</LastName>
<ForeName>Matias</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Cui</LastName>
<ForeName>Yuehua</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wu</LastName>
<ForeName>Rongling</ForeName>
<Initials>R</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Genetics</MedlineTA>
<NlmUniqueID>0374636</NlmUniqueID>
<ISSNLinking>0016-6731</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000465" MajorTopicYN="N">Algorithms</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003198" MajorTopicYN="N">Computer Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004777" MajorTopicYN="Y">Environment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005838" MajorTopicYN="N">Genotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016013" MajorTopicYN="N">Likelihood Functions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008957" MajorTopicYN="Y">Models, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009010" MajorTopicYN="N">Monte Carlo Method</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010641" MajorTopicYN="Y">Phenotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D040641" MajorTopicYN="Y">Quantitative Trait Loci</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2008</Year>
<Month>5</Month>
<Day>22</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2008</Year>
<Month>9</Month>
<Day>23</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2008</Year>
<Month>5</Month>
<Day>22</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">18493077</ArticleId>
<ArticleId IdType="pii">179/1/627</ArticleId>
<ArticleId IdType="doi">10.1534/genetics.107.081794</ArticleId>
<ArticleId IdType="pmc">PMC2390639</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Genetics. 1999 Jul;152(3):1203-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10388834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1999 Oct;153(2):1029-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10511576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2000 Aug;155(4):1773-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10924473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2001 Jan;2(1):11-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11253063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2001 Sep;159(1):371-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11560912</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2002 Aug;161(4):1685-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12196411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genet Res. 2002 Jun;79(3):211-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12220128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2003 Aug 19;13(16):1388-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12932322</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2003 Sep;165(1):353-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14504242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2003 Oct;165(2):901-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14573497</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Ecol. 2004 Sep 07;4:14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15353004</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2004 Nov;5(11):838-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15520793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Apr;166(1):101-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15760355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 May 3;102 Suppl 1:6543-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15851679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am Nat. 2005 Oct;166(4):E115-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16224697</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2006 Mar;7(3):174-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16485017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2006 Jul;173(3):1649-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16585135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 2007 Jan;98(1):28-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16955112</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2006 Dec;174(4):2159-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17028335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Jan 23;104(4):1278-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17220273</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1989 Jan;121(1):129-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17246488</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2007 Feb 16;3(2):e30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17305433</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 2007 May;98(5):247-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17406660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 1995 May;10(5):212-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21237012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 1995 Jul;91(1):33-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24169664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 1993 Nov;87(3):392-401</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24190268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1989 Jan;121(1):185-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2563713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1985 May;39(3):505-522</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28561964</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1998 Aug;52(4):967-977</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28565223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genomics. 1987 Oct;1(2):174-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3692487</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1995 Jul;140(3):1111-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7672582</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1994 Nov;138(3):963-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7851788</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1994 Aug;137(4):1121-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7982566</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1994 Apr;136(4):1447-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8013917</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1994 Apr;136(4):1457-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8013918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1996 Jul;143(3):1417-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8807312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1996 Nov;144(3):1205-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8913761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1998 May;149(1):289-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9584103</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>État de New York</li>
</region>
<settlement>
<li>Buffalo (New York)</li>
</settlement>
<orgName>
<li>Université d'État de New York à Buffalo</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Berg, Arthur" sort="Berg, Arthur" uniqKey="Berg A" first="Arthur" last="Berg">Arthur Berg</name>
<name sortKey="Cui, Yuehua" sort="Cui, Yuehua" uniqKey="Cui Y" first="Yuehua" last="Cui">Yuehua Cui</name>
<name sortKey="Drost, Derek" sort="Drost, Derek" uniqKey="Drost D" first="Derek" last="Drost">Derek Drost</name>
<name sortKey="Fu, Guifang" sort="Fu, Guifang" uniqKey="Fu G" first="Guifang" last="Fu">Guifang Fu</name>
<name sortKey="Kirst, Matias" sort="Kirst, Matias" uniqKey="Kirst M" first="Matias" last="Kirst">Matias Kirst</name>
<name sortKey="Novaes, Evandro" sort="Novaes, Evandro" uniqKey="Novaes E" first="Evandro" last="Novaes">Evandro Novaes</name>
<name sortKey="Tan, Aixin" sort="Tan, Aixin" uniqKey="Tan A" first="Aixin" last="Tan">Aixin Tan</name>
<name sortKey="Wu, Rongling" sort="Wu, Rongling" uniqKey="Wu R" first="Rongling" last="Wu">Rongling Wu</name>
<name sortKey="Yap, John Stephen" sort="Yap, John Stephen" uniqKey="Yap J" first="John Stephen" last="Yap">John Stephen Yap</name>
<name sortKey="Yu, Qibin" sort="Yu, Qibin" uniqKey="Yu Q" first="Qibin" last="Yu">Qibin Yu</name>
</noCountry>
<country name="États-Unis">
<region name="État de New York">
<name sortKey="Ma, Chang Xing" sort="Ma, Chang Xing" uniqKey="Ma C" first="Chang-Xing" last="Ma">Chang-Xing Ma</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003A03 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003A03 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:18493077
   |texte=   A statistical model for testing the pleiotropic control of phenotypic plasticity for a count trait.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:18493077" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020